Using CT-guided stereotactic prostate radiation therapy (CT-SPRT) to assess sustained murine prostate ablation

Author:

Zahalka Ali H.,Brodin N. Patrik,Maryanovich Maria,Wang Xizhe,Watts Kara L.,Pinho Sandra,Guha Chandan,Frenette Paul S.

Abstract

AbstractThe prostate is a hormone-responsive organ where testicular androgens drive the proliferation and survival of prostatic cells, ensuring the development and functioning of this gland throughout life. Androgen deprivation therapy leads to apoptosis of prostatic cells and organ regression, and is a cornerstone of prostate cancer and benign prostatic hypertrophy treatment. For several decades, androgen deprivation has been used as an adjuvant to external beam radiotherapy, however, emerging data suggests that the low rates of epithelial proliferation in the castrated prostate imparts radio-resistance. As proliferating cells exhibit increased sensitivity to radiation, we hypothesized that short bursts of synchronized epithelial proliferation, which can be achieved by exogeneous testosterone supplementation prior to targeted high-dose radiation, would maximize sustained prostate ablation, while minimizing damage to surrounding tissues. To test this hypothesis, we designed a novel computed-tomography (CT)-guided stereotactic prostate radiation therapy (CT-SPRT) technique to deliver a single high-dose 25 Gy fraction of X-ray radiation. Sustained prostatic cell ablation was assessed post CT-SPRT by measuring prostate weight, epithelial cell number, and relative contributions of luminal and basal epithelial populations in control and testosterone-pretreated glands. CT-SPRT was safely delivered with no observed damage to surrounding rectal and bladder tissues. Importantly, castrated mice that received a pulse of testosterone to induce synchronous cell proliferation prior to CT-SPRT exhibited significant sustained gland ablation compared to control mice. These results provide new insights in stereotactic radiotherapy sensitivity to maximize prostatic cell ablation and improve our understanding of prostate gland regeneration that can potentially lead to improved non-invasive therapies for benign prostatic hypertrophy and prostate cancer.

Funder

National Cancer Institute

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3