Construction of chitosan-supported nickel cobaltite composite for efficient electrochemical capacitor and water-splitting applications

Author:

Medany Shymaa S.,Nafady Ayman,Soomro Razium Ali,Hefnawy Mahmoud A.

Abstract

AbstractThe construction of highly efficient electrode material is of considerable interest, particularly for high capacitance and water-splitting applications. Herein, we present the preparation of a NiCo2O4-Chitosan (NC@Chit) nanocomposite using a simple hydrothermal technique designed for applications in high capacitance and water-splitting. The structure/composition of the NC@Chit composite was characterized using different analytical methods, containing electron microscope (SEM and TEM), and powder X-ray diffraction (XRD). When configured as an anode material, the NC@Chit displayed a high capacitance of 234 and 345 F g−1 (@1Ag−1 for GC/NC and NC@Chit, respectively) in an alkaline electrolyte. The direct use of the catalyst in electrocatalytic water-splitting i.e., HER and OER achieved an overpotential of 240 mV and 310 mV at a current density of 10 mA cm−2, respectively. The obtained Tafel slopes for OER and HER were 62 and 71 mV dec−1, respectively whereas the stability and durability of the fabricated electrodes were assessed through prolonged chronoamperometry measurement at constant for 10 h. The electrochemical water splitting was studied for modified nickel cobaltite surface using an impedance tool, and the charge transfer resistances were utilized to estimate the electrode activity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3