Machine learning-based 3D modeling and volumetry of human posterior vitreous cavity of optical coherence tomographic images

Author:

Takahashi Hiroyuki,Mao Zaixing,Du Ran,Ohno-Matsui Kyoko

Abstract

AbstractThe structure of the human vitreous varies considerably because of age-related liquefactions of the vitreous gel. These changes are poorly studied in vivo mainly because their high transparency and mobility make it difficult to obtain reliable and repeatable images of the vitreous. Optical coherence tomography can detect the boundaries between the vitreous gel and vitreous fluid, but it is difficult to obtain high resolution images that can be used to convert the images to three-dimensional (3D) images. Thus, the purpose of this study was to determine the shape and characteristics of the vitreous fluid using machine learning-based 3D modeling in which manually labelled fluid areas were used to train deep convolutional neural network (DCNN). The trained DCNN labelled vitreous fluid automatically and allowed us to obtain 3D vitreous model and to quantify the vitreous fluidic cavities. The mean volume and surface area of posterior vitreous fluidic cavities are 19.6 ± 7.8 mm3 and 104.0 ± 18.9 mm2 in eyes of 17 school children. The results suggested that vitreous fluidic cavities expanded as the cavities connects with each other, and this modeling system provided novel imaging markers for aging and eye diseases.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3