Author:
Zhang Jingyi,Heath Lenwood S.
Abstract
AbstractMass testing is essential for identifying infected individuals during an epidemic and allowing healthy individuals to return to normal social activities. However, testing capacity is often insufficient to meet global health needs, especially during newly emerging epidemics. Dorfman’s method, a classic group testing technique, helps reduce the number of tests required by pooling the samples of multiple individuals into a single sample for analysis. Dorfman’s method does not consider the time dynamics or limits on testing capacity involved in infection detection, and it assumes that individuals are infected independently, ignoring community correlations. To address these limitations, we present an adaptive group testing (AGT) strategy based on graph partitioning, which divides a physical contact network into subgraphs (groups of individuals) and assigns testing priorities based on the social contact characteristics of each subgraph. Our AGT aims to maximize the number of infected individuals detected and minimize the number of tests required. After each testing round (perhaps on a daily basis), the testing priority is increased for each neighboring group of known infected individuals. We also present an enhanced infectious disease transmission model that simulates the dynamic spread of a pathogen and evaluate our AGT strategy using the simulation results. When applied to 13 social contact networks, AGT demonstrates significant performance improvements compared to Dorfman’s method and its variations. Our AGT strategy requires fewer tests overall, reduces disease spread, and retains robustness under changes in group size, testing capacity, and other parameters. Testing plays a crucial role in containing and mitigating pandemics by identifying infected individuals and helping to prevent further transmission in families and communities. By identifying infected individuals and helping to prevent further transmission in families and communities, our AGT strategy can have significant implications for public health, providing guidance for policymakers trying to balance economic activity with the need to manage the spread of infection.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Li, Z. J. et al. Comprehensive large-scale nucleic acid-testing strategies support china’s sustained containment of COVID-19. Nat. Med. 27, 740–742 (2021).
2. Jon Cohen, K. K. Mass testing, school closings, lockdowns: Countries pick tactics in ‘war’ against coronavirus. URL: https://www.science.org/content/article/mass-testing-school-closings-lockdowns-countries-pick-tactics-war-against-coronavirus.
3. Shen, M. Z. et al. Recent advances and perspectives of nucleic acid detection for coronavirus. J. Pharm. Anal. 10, 97–101 (2020).
4. Aleta, A. et al. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nat. Human Behav. 4, 964–971 (2020).
5. Barak, N. et al. Lessons from applied large-scale pooling of 133,816 SARS-CoV-2 RT-PCR tests. Sci. Trans. Med. 13, eabf2823 (2021).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献