Effect of rice straw and swine manure biochar on N2O emission from paddy soil

Author:

Yang Zhanbiao,Yu Yi,Hu Rujing,Xu Xiaoxun,Xian Junren,Yang Yuanxiang,Liu Lixia,Cheng Zhang

Abstract

AbstractWe analyzed the effects of rice straw biochar (RSBC) and swine manure biochar (SMBC) on N2O emission from paddy soil. The biochars were added to soil at the rates of 1% and 5% (w/w), and N2O emission, soil properties and soil enzyme activities were determined at the elongation, heading and maturation stages of rice growth. The N2O flux started within 2 h of adding the biochar, and decreased significantly thereafter during the three growth stages. The cumulative N2O emission was suppressed by 45.14–73.96% following biochar application, and 5% SMBC resulted in the lowest cumulative emission. In addition, biochar application significantly increased soil pH, soil organic carbon (SOC), NO3 levels and urease activity, and decreased soil NH4+ and nitrate reductase activity. Regression analysis indicated that cumulative N2O emission was correlated positively to NH4+, and negatively to soil pH, SOC and NO3. SEM further revealed that biochar application weakened the denitrification process, and the NH4+ level had the most significant impact on N2O emission. Taken together, RSBC and SMBC regulated the nitrogen cycle in paddy soil and mitigated N2O emission by increasing soil pH, decreasing nitrate reductase activity and NH4+ content.

Funder

National Natural Science Foundation of China

Sichuan Youth Science and Technology Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3