Temporal-spatial cross attention network for recognizing imagined characters

Author:

Xu Mingyue,Zhou Wenhui,Shen Xingfa,Qiu Junping,Li Dingrui

Abstract

AbstractPrevious research has primarily employed deep learning models such as Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs) for decoding imagined character signals. These approaches have treated the temporal and spatial features of the signals in a sequential, parallel, or single-feature manner. However, there has been limited research on the cross-relationships between temporal and spatial features, despite the inherent association between channels and sampling points in Brain-Computer Interface (BCI) signal acquisition, which holds significant information about brain activity. To address the limited research on the relationships between temporal and spatial features, we proposed a Temporal-Spatial Cross-Attention Network model, named TSCA-Net. The TSCA-Net is comprised of four modules: the Temporal Feature (TF), the Spatial Feature (SF), the Temporal-Spatial Cross (TSCross), and the Classifier. The TF combines LSTM and Transformer to extract temporal features from BCI signals, while the SF captures spatial features. The TSCross is introduced to learn the correlations between the temporal and spatial features. The Classifier predicts the label of BCI data based on its characteristics. We validated the TSCA-Net model using publicly available datasets of handwritten characters, which recorded the spiking activity from two micro-electrode arrays (MEAs). The results showed that our proposed TSCA-Net outperformed other comparison models (EEG-Net, EEG-TCNet, S3T, GRU, LSTM, R-Transformer, and ViT) in terms of accuracy, precision, recall, and F1 score, achieving 92.66$$\%$$ % , 92.77$$\%$$ % , 92.70$$\%$$ % , and 92.58$$\%$$ % , respectively. The TSCA-Net model demonstrated a 3.65$$\%$$ % to 7.49$$\%$$ % improvement in accuracy over the comparison models.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

National Social Science Fund of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3