A clinically relevant pulse treatment generates a bortezomib-resistant myeloma cell line that lacks proteasome mutations and is sensitive to Bcl-2 inhibitor venetoclax

Author:

Downey-Kopyscinski Sondra L.,Srinivasa Sriraja,Kisselev Alexei F.

Abstract

AbstractProteasome inhibitors bortezomib and carfilzomib are the backbones of treatments of multiple myeloma, which remains incurable despite many recent advances. With many patients relapsing despite high initial response rates to proteasome inhibitor-containing regimens, it is critical to understand the process of acquired resistance. In vitro generated resistant cell lines are important tools in this process. The majority of previously developed bortezomib-resistant cell lines bear mutations in the proteasome PSMB5 sites, the prime target of bortezomib and carfilzomib, which are rarely observed in patients. Here we present a novel bortezomib-resistant derivative of the KMS-12-BM multiple myeloma cell line, KMS-12-BM-BPR. Unlike previously published bortezomib-resistant cell lines, it was created using clinically relevant twice-weekly pulse treatments with bortezomib instead of continuous incubation. It does not contain mutations in the PSMB5 site and retains its sensitivity to carfilzomib. Reduced load on proteasome due to decreased protein synthesis appears to be the main cause of resistance. In addition, KMS-12-BM-BPR cells are more sensitive to Bcl-2 inhibitor venetoclax. Overall, this study demonstrates the feasibility of creating a proteasome inhibitor resistant myeloma cell lines by using clinically relevant pulse treatments and provides a novel model of acquired resistance.

Funder

National Cancer Institute

Friends of the Norris Cotton Cancer Center

Rosaline Borison Memorial Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proteasome Inhibitors in Multiple Myeloma;Hematology/Oncology Clinics of North America;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3