Analyzing urban influence on extreme winter precipitation through observations and numerical simulation of two South China case studies

Author:

Hu Chenxi,Tam Chi-YungORCID,Yang Zong-liang,Wang ZiqianORCID

Abstract

AbstractThis study investigates the impact of urbanization on extreme winter rainfall in the South China Greater Bay Area (GBA) through the analysis of hourly station observations and simulations using the Weather Research and Forecasting Model with the Single Layer Urban Canopy Model (WRF-SLUCM). Data from 2008 to 2017 reveal that urban areas in the GBA experience lower 99th percentile hourly winter rainfall intensity compared to surrounding rural regions. However, urban locations exhibit higher annual maximum hourly rainfall (Rmax) and very extreme rainfall events (99.99th percentile) in winter, suggesting a positive influence of urbanization on extreme winter precipitation. A case study further underscores the role of the Urban Heat Island (UHI) effect in enhancing extreme rainfall intensity and probability in the GBA urban areas. Additionally, two extreme cases were dynamically downscaled using WRF-SLUCM, involving four parallel experiments: replacing urban land use with cropland (Nourban), using historical urban land use data from 1999 (99LS), projecting near-future urban land use for 2030 (30LS), and considering 2030 urban land use without anthropogenic heat (AH) (30LS-AH0). Synoptic analysis demonstrates that cold air intrusion suppresses the GBA UHI in Case 2013 but not in Case 2015. Reduced evaporation and humidity induced by urban surfaces significantly decrease urban precipitation in Case 2013. In contrast, the persistent UHI in Case 2015 enhances local convection and land–ocean circulation, leading to increased moisture flux convergence and amplified urban precipitation intensity and probability in 30LS compared to Nourban. This amplification is primarily attributed to AH, while the change in 99LS remains insignificant. These findings suggest that urban influences on extreme precipitation in the GBA persist during winter, particularly when the UHI effect is maintained.

Funder

the National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3