Intertwined-pulse modulation for compressive data telemetry

Author:

Farsiani Sirous,Sodagar Amir M.

Abstract

AbstractThis paper presents a novel approach for anisochronous pulse-based modulation. In the proposed approach, referred to as the intertwined-pulse modulation (IPM), every pair of consecutive symbols overlap in time. This allows for shortening the time allocated for the transmission of the symbols, hence achieving temporal compaction while the data goes through the line encoding step in a digital communication system. The IPM is also uniquely superior to other existing anisochronous pulse-based modulation schemes in the fact that it exhibits robust symbol error rate against unwanted variations in both rise/fall times of the pulses in the modulated waveform, and in the threshold level used for data detection on the receiver side. An experimental setup was developed to implement an IPM encoder using standard digital hardware, and an IPM decoder as a part of the receiver system in software. According to the experimental results (supported by simulation results and theoretical studies), for the data mean value of mid-full-scale range, the proposed IPM scheme exhibits a time-domain compaction rate of up to 209.2%.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3