Millennial-scale variability of Greenland dust provenance during the last glacial maximum as determined by single particle analysis

Author:

Ro Seokhyun,Park Jonghyeon,Yoo Hanjin,Han Changhee,Lee Ahhyung,Lee Yoojin,Kim Minjeong,Han Yeongcheol,Svensson Anders,Shin Jinhwa,Ro Chul-Un,Hong Sungmin

Abstract

AbstractGreenland ice core records exhibited 100-fold higher dust concentrations during the Last Glacial Maximum (LGM) than during the Holocene, and dust input temporal variability corresponded to different climate states in the LGM. While East Asian deserts, the Sahara, and European loess have been suggested as the potential source areas (PSAs) for Greenland LGM dust, millennial-scale variability in their relative contributions within the LGM remains poorly constrained. Here, we present the morphological, mineralogical, and geochemical characteristics of insoluble microparticles to constrain the provenance of dust in Greenland NEEM ice core samples covering cold Greenland Stadials (GS)-2.1a to GS-3 (~ 14.7 to 27.1 kyr ago) in the LGM. The analysis was conducted on individual particles in microdroplet samples by scanning electron microscopy with energy dispersive X-ray spectroscopy and Raman microspectroscopy. We found that the kaolinite-to-chlorite (K/C) ratios and chemical index of alteration (CIA) values were substantially higher (K/C: 1.4 ± 0.7, CIA: 74.7 ± 2.9) during GS-2.1a to 2.1c than during GS-3 (K/C: 0.5 ± 0.1, CIA: 65.8 ± 2.8). Our records revealed a significant increase in Saharan dust contributions from GS-2.1a to GS-2.1c and that the Gobi Desert and/or European loess were potential source(s) during GS-3. This conclusion is further supported by distinctly different carbon contents in particles corresponding to GS-2.1 and GS-3. These results are consistent with previous estimates of proportional dust source contributions obtained using a mixing model based on Pb and Sr isotopic compositions in NEEM LGM ice and indicate millennial-scale changes in Greenland dust provenance that are probably linked to large-scale atmospheric circulation variabilities during the LGM.

Funder

Korea Polar Research Institute

Ministry of Science and ICT, South Korea

Ministry of Education, Science and Technology, Sout Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3