Analysis of the fractional relativistic polytropic gas sphere

Author:

Aboueisha Mohamed S.,Nouh Mohamed I.,Abdel-Salam Emad A. -B.,Kamel Tarek M.,Beheary M. M.,Gadallah Kamel A. K.

Abstract

AbstractMany stellar configurations, including white dwarfs, neutron stars, black holes, supermassive stars, and star clusters, rely on relativistic effects. The Tolman–Oppenheimer–Volkoff (TOV) equation of the polytropic gas sphere is ultimately a hydrostatic equilibrium equation developed from the general relativity framework. In the modified Riemann Liouville (mRL) frame, we formulate the fractional TOV (FTOV) equations and introduce an analytical solution. Using power series expansions in solving FTOV equations yields a limited physical range to the convergent power series solution. Therefore, combining the two techniques of Euler–Abel transformation and Padé approximation has been applied to improve the convergence of the obtained series solutions. For all possible values of the relativistic parameters ($$\sigma$$ σ ), we calculated twenty fractional gas models for the polytropic indexes n = 0, 0.5, 1, 1.5, 2. Investigating the impacts of fractional and relativistic parameters on the models revealed fascinating phenomena; the two effects for n = 0.5 are that the sphere’s volume and mass decrease with increasing $$\sigma$$ σ and the fractional parameter ($$\alpha$$ α ). For n = 1, the volume decreases when $$\sigma$$ σ  = 0.1 and then increases when $$\sigma$$ σ  = 0.2 and 0.3. The volume of the sphere reduces as both $$\sigma$$ σ and $$\alpha$$ α increase for n = 1.5 and n = 2. We calculated the maximum mass and the corresponding minimum radius of the white dwarfs modeled with polytropic index n = 3 and several fractional and relativistic parameter values. We obtained a mass limit for the white dwarfs somewhat near the Chandrasekhar limit for the integer models with small relativistic parameters ($$\alpha = 1$$ α = 1 , $$\sigma = 0.001$$ σ = 0.001 ). The situation is altered by lowering the fractional parameter; the mass limit increases to Mlimit = 1.63348 M at $$\alpha = 0.95$$ α = 0.95 and $$\sigma = 0.001$$ σ = 0.001 .

Funder

The National Research Institute of Astronomy and Geophysics

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference35 articles.

1. Walker, A. G. Note on relativistic mechanics. Proc. Edinb. Math. Soc. 4, 170 (1936).

2. Synge, J. L. The energy tensor of continuous medium. Trans. Roy. Soc. Canada 28, 127 (1934).

3. Einstein, A. On a stationary system with spherical symmetry consisting of many gravitating masses, 939. Ann. Math. 40, 922 (1939).

4. Sen, N. R. & Roy, T. C. On a steady gravitational field of a star cluster free from singularities. Zs. Ap. 34, 84 (1954).

5. Sharma, J. P. Relativistic spherical polytropes—an analytical approach. Gen. Relativ. Gravity 13, 7 (1981).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3