Phylogeography of the veined squid, Loligo forbesii, in European waters

Author:

Göpel Anika,Oesterwind Daniel,Barrett Christopher,Cannas Rita,Caparro Luis Silva,Carbonara Pierluigi,Donnaloia Marilena,Follesa Maria Cristina,Larivain Angela,Laptikhovsky Vladimir,Lefkaditou Evgenia,Robin Jean-Paul,Santos Maria Begoña,Sobrino Ignacio,Valeiras Julio,Valls Maria,Vieira Hugo C.,Wieland Kai,Bastrop Ralf

Abstract

AbstractThe veined squid, Loligo forbesii Steenstrup, 1856, occurs at the European Shelf areas including the Azores and represents a valuable resource for the European commercial fishery in the North East Atlantic. However, very little is known about its population structure and phylogeography. This lack of knowledge also impedes the development of sustainable fishery management for this species. The present study combined the use of two types of markers that retrieve patterns of gene flow in different time spans; the analysis of 16 nuclear microsatellites and sequencing of the mitochondrial cytochrome oxidase subunit I (COI). Whereas the high mutation rate of microsatellites allows the description of recent patterns of connectivity in species, the lower mutation rate of COI provides phylogeographic patterns on a longer timescale. A total of 347 individuals of L. forbesii were investigated from nearly the entire distribution range of the species, including the North East Atlantic Shelf, the Azores and the Mediterranean. Individuals from the Western and Eastern Mediterranean Sea have never been included in a genetic study before. We were able to analyse COI sequences from all 12 sampling areas and define three clades of L. forbesii. Due to our large sampling area, we are presenting 13 COI-haplotypes that were previously unknown. The microsatellite analysis does not include the Azores but three main clades could be identified at the remaining 11 sampling sites. Low FST values indicate gene flow over large geographical distances. However, the genetically significant differences and an additional slight grouping in the microsatellite structure reveal that geographical barriers seem to influence the population structure and reduce gene flow. Furthermore, both markers provide strong evidence that the observed phylogeographic pattern reflects the geographical history of the Azores and the Mediterranean Sea.

Funder

Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference64 articles.

1. Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, R406–R407 (2016).

2. Jereb, P. et al. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No vol. 325 (2015).

3. ICES. ICES WGCEPH REPORT 2015 Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH). 8–11 (2019).

4. Quetglas, A. et al. Long-term spatiotemporal dynamics of cephalopod assemblages in the Mediterranean sea. Sci. Mar. 83, 33–42 (2019).

5. Martins, H. R. Biological studies of the exploited stock of Loligo forbesi (Mollusca: Cephalopoda) in the Azores. J. Mar. Biol. Assoc. United Kingdom 62, 799–808 (1982).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3