Author:
Hiraoka Takehiro,Hirota Yasushi,Fukui Yamato,Gebril Mona,Kaku Tetsuaki,Aikawa Shizu,Hirata Tomoyuki,Akaeda Shun,Matsuo Mitsunori,Haraguchi Hirofumi,Saito-Kanatani Mayuko,Shimizu-Hirota Ryoko,Takeda Norihiko,Yoshino Osamu,Fujii Tomoyuki,Osuga Yutaka
Abstract
AbstractAlthough it has been reported that uterine signal transducer and activator of transcription 3 (STAT3) is essential for embryo implantation, the exact roles of uterine epithelial and stromal STAT3 on embryo implantation have not been elucidated. To address this issue, we generated Stat3-floxed/Ltf-iCre (Stat3-eKO), Stat3-floxed/Amhr2-Cre (Stat3-sKO), and Stat3-floxed/Pgr-Cre (Stat3-uKO) mice to delete Stat3 in uterine epithelium, uterine stroma, and whole uterine layers, respectively. We found that both epithelial and stromal STAT3 have critical roles in embryo attachment because all the Stat3-eKO and Stat3-sKO female mice were infertile due to implantation failure without any embryo attachment sites. Stat3-eKO uteri showed indented structure of uterine lumen, indicating the role of epithelial STAT3 in slit-like lumen formation in the peri-implantation uterus. Stat3-sKO uteri exhibited hyper-estrogenic responses and persistent cell proliferation of the epithelium in the peri-implantation uterus, suggesting the role of stromal STAT3 in uterine receptivity. In addition, Stat3-uKO female mice possessed not only the characteristic of persistent epithelial proliferation but also that of indented structure of uterine lumen. These findings indicate that epithelial STAT3 controls the formation of slit-like structure in uterine lumen and stromal STAT3 suppresses epithelial estrogenic responses and cell proliferation. Thus, epithelial and stromal STAT3 cooperatively controls uterine receptivity and embryo attachment through their different pathways.
Funder
Japan Society for the Promotion of Science
Japan Agency for Medical Research and Development
Takeda Science Foundation
NIPRO corporation
Publisher
Springer Science and Business Media LLC
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献