Author:
Li Jun,Xiong Fengyin,Chen Zhuo
Abstract
AbstractBiomass gasification, especially distribution to power generation, is considered as a promising way to tackle global energy and environmental challenges. However, previous researches on integrated analysis of the greenhouse gases (GHG) abatement potentials associated with biomass electrification are sparse and few have taken the freshwater utilization into account within a coherent framework, though both energy and water scarcity are lying in the central concerns in China’s environmental policy. This study employs a Life cycle assessment (LCA) model to analyse the actual performance combined with water footprint (WF) assessment methods. The inextricable trade-offs between three representative energy-producing technologies are explored based on three categories of non-food crops (maize, sorghum and hybrid pennisetum) cultivated in marginal arable land. WF results demonstrate that the Hybrid pennisetum system has the largest impact on the water resources whereas the other two technology options exhibit the characteristics of environmental sustainability. The large variances in contribution ratio between the four sub-processes in terms of total impacts are reflected by the LCA results. The Anaerobic Digestion process is found to be the main contributor whereas the Digestate management process is shown to be able to effectively mitigate the negative environmental impacts with an absolute share. Sensitivity analysis is implemented to detect the impacts of loss ratios variation, as silage mass and methane, on final results. The methane loss has the largest influence on the Hybrid pennisetum system, followed by the Maize system. Above all, the Sorghum system demonstrates the best performance amongst the considered assessment categories. Our study builds a pilot reference for further driving large-scale project of bioenergy production and conversion. The synergy of combined WF-LCA method allows us to conduct a comprehensive assessment and to provide insights into environmental and resource management.
Funder
Guangdong Basic and Applied Basic Research Foundation
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Li, B. et al. The contribution of China’s emissions to global climate forcing. Nature 531, 357–361 (2016).
2. Yang, Q. et al. Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China. J. Clean Prod. 205, 661–671 (2018).
3. Amiri, S., Henning, D. & Karlsson, B. G. Simulation and introduction of a CHP plant in a Swedish biogas system. Renew. Energ. 49, 242–249 (2013).
4. NDRC. National Development and Reform Committee of China, 2016. The "13th Five-year Plan" of Biomass Energy, Beijing (2016) [In Chinese].
5. Serra, P., Giuntoli, J., Agostini, A., Colauzzi, M. & Amaducci, S. Coupling sorghum biomass and wheat straw to minimise the environmental impact of bioenergy production. J. Clean. Prod. 154, 242–254 (2017).
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献