Generalizability of deep learning models for dental image analysis

Author:

Krois Joachim,Garcia Cantu Anselmo,Chaurasia Akhilanand,Patil Ranjitkumar,Chaudhari Prabhat Kumar,Gaudin Robert,Gehrung Sascha,Schwendicke Falk

Abstract

AbstractWe assessed the generalizability of deep learning models and how to improve it. Our exemplary use-case was the detection of apical lesions on panoramic radiographs. We employed two datasets of panoramic radiographs from two centers, one in Germany (Charité, Berlin, n = 650) and one in India (KGMU, Lucknow, n = 650): First, U-Net type models were trained on images from Charité (n = 500) and assessed on test sets from Charité and KGMU (each n = 150). Second, the relevance of image characteristics was explored using pixel-value transformations, aligning the image characteristics in the datasets. Third, cross-center training effects on generalizability were evaluated by stepwise replacing Charite with KGMU images. Last, we assessed the impact of the dental status (presence of root-canal fillings or restorations). Models trained only on Charité images showed a (mean ± SD) F1-score of 54.1 ± 0.8% on Charité and 32.7 ± 0.8% on KGMU data (p < 0.001/t-test). Alignment of image data characteristics between the centers did not improve generalizability. However, by gradually increasing the fraction of KGMU images in the training set (from 0 to 100%) the F1-score on KGMU images improved (46.1 ± 0.9%) at a moderate decrease on Charité images (50.9 ± 0.9%, p < 0.01). Model performance was good on KGMU images showing root-canal fillings and/or restorations, but much lower on KGMU images without root-canal fillings and/or restorations. Our deep learning models were not generalizable across centers. Cross-center training improved generalizability. Noteworthy, the dental status, but not image characteristics were relevant. Understanding the reasons behind limits in generalizability helps to mitigate generalizability problems.

Funder

Charité

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3