Lignin nanoparticles as a highly efficient adsorbent for the removal of methylene blue from aqueous media

Author:

Pourbaba Reza,Abdulkhani Ali,Rashidi Alimorad,Ashori Alireza

Abstract

AbstractThis work demonstrated enhanced adsorption capabilities of lignin nanoparticles (LNPs) synthesized via a straightforward hydrotropic method compared to pristine lignin (PL) powder for removing methylene blue dye from aqueous solutions. Kraft lignin was used as a precursor and p-toluenesulfonic acid as the hydrotrope to produce spherical LNPs with ~ 200 nm diameter. Extensive characterization by SEM, AFM, DLS, zeta potential, and BET verified successful fabrication of microporous LNPs with fourfold higher specific surface area (14.9 m2/g) compared to PL (3.4 m2/g). Significantly reduced particle agglomeration and rearranged surface chemistry (zeta potential of −13.3 mV) arising from the self-assembly of lignin fractions under hydrotropic conditions enabled the application of LNPs and superior adsorbents compared to PL. Batch adsorption experiments exhibited up to 14 times higher methylene blue removal capacity, from 20.74 for PL to 127.91 mg/g for LNPs, and ultrafast equilibrium uptake within 3 min for LNPs compared to 10 min for PL. Kinetic modeling based on pseudo-first-order and pseudo-second-order equations revealed chemisorption as the predominant mechanism, with a rate constant of 0.032825 g/mg·h for LNPs—over an order of magnitude higher than PL (0.07125 g/mg·h). Isotherm modeling indicated Langmuir monolayer adsorption behavior on relatively uniform lignin surface functional groups. The substantially augmented adsorption performance of LNPs arose from the increased surface area and abundance of surface functional groups, providing greater accessibility of chemically active binding sites for rapid dye uptake. Overall, this work demonstrates that tailoring lignin nanoparticle structure and surface chemistry via scalable hydrotropic synthesis is a simple and sustainable approach for producing highly efficient lignin-based nano-adsorbents for organic dye removal from industrial wastewater.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3