Mid-Holocene expansion of the Indian Ocean warm pool documented in coral Sr/Ca records from Kenya

Author:

Leupold Maike,Pfeiffer Miriam,Watanabe Takaaki K.,Nakamura Nobuko,Reuning Lars,Blume Alina,McClanahan Tim,Mohammed Mchulla,Kiriama Herman,Garbe-Schönberg Dieter,Ritzrau Andrea Schröder,Zinke Jens

Abstract

AbstractProxy reconstructions suggest that mid-Holocene East African temperatures were warmer than today between 8 and 5 ka BP, but climate models cannot replicate this warming. Precessional forcing caused a shift of maximum insolation from boreal spring to fall in the mid-Holocene, which may have favored intense warming at the start of the warm season. Here, we use three Porites corals from Kenya that represent time windows from 6.55 to 5.87 ka BP to reconstruct past sea surface temperature (SST) seasonality from coral Sr/Ca ratios in the western Indian Ocean during the mid-Holocene. Although the Indian monsoon was reportedly stronger in the mid-Holocene, which should have amplified the seasonal cycle of SST in the western Indian Ocean, the corals suggest reduced seasonality (mean 3.2 °C) compared to the modern record (mean 4.3 °C). Warming in austral spring is followed by a prolonged period of warm SSTs, suggesting that an upper limit of tropical SSTs under mid-Holocene conditions was reached at the start of the warm season, and SSTs then remained stable. Similar changes are seen at the Seychelles. Bootstrap estimates suggest a reduction in SST seasonality of 1.3 ± 0.22 °C at Kenya and 1.7 ± 0.32 °C at the Seychelles. SST seasonality at Kenya corresponds to present-day SST seasonality at 55° E–60° E, while SST seasonality at the Seychelles corresponds to present day SST seasonality at ~ 65° E. This implies a significant westward expansion of the Indian Ocean warm pool. Furthermore, the coral data suggests that SST seasonality deviates from seasonal changes in orbital insolation due to ocean–atmosphere interactions.

Funder

Deutsche Forschungsgemeinschaft

Western Indian Ocean Marine Science Association

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3