High-performance phononic crystal sensing structure for acetone solution concentration sensing

Author:

Fang Tian-Yin,Sun Xiao-Wei,Wen Xiao-Dong,Li Yun-Xia,Liu Xi-Xuan,Song Ting,Song Yu-Zhe,Liu Zi-Jiang

Abstract

AbstractA two-dimensional phononic crystal sensor model with high-quality factor and excellent sensitivity for sensing acetone solutions and operating at 25–45 kHz is proposed. The model for filling solution cavities is based on reference designs of quasi-crystal and gradient cavity structures. The transmission spectrum of sensor is simulated by the finite element method. High-quality factor of 45,793.06 and sensitivity of 80,166.67 Hz are obtained for the acetone concentration with 1–9.1%, and quality factor of 61,438.09 and sensitivity of 24,400.00 Hz are obtained for the acetone concentration range of 10–100%, which indicated the sensor could still achieve high sensitivity and quality factor at operating frequencies from 25 to 45 kHz. To verify the application of the sensor to sensing other solutions, the sensitivity for sound velocity and density is calculated as 24.61 m-1 and 0.7764 m3/(kg × s), respectively. It indicates the sensor is sensitive to acoustic impedance changes of the solution and equally suitable for sensing other solutions. The simulation results reveal the phononic crystal sensor possessed high-performance in composition capture in pharmaceutical production and petrochemical industry, which can provide theoretical reference for the design of new biochemical sensors for reliable detection of solution concentration.

Funder

the Industrial Support and Guidance Project of Colleges and Universities of Gansu Province

the Lanzhou Science and Technology Planning Program

Science and Technology Project of Lanzhou Chengguan District

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3