Implementation of helicase-dependent amplification with SYBR Green I for prompt naked-eye detection of bacterial contaminants in platelet products

Author:

Yamket Warangkana,Sathianpitayakul Panuwat,Santanirand Pitak,Ratthawongjirakul Panan

Abstract

AbstractPlatelet transfusions may lead to more significant risks of infection and septic transfusion reactions that can be fatal to the recipient. Platelet products should be screened to limit or detect bacterial contamination before application to patients to minimise any adverse reactions. This study aimed to develop a helicase-dependent amplification (HDA) technique targeting a universal highly conserved bacterial gene, 16S rRNA, in combination with naked-eye detection using SYBR Green I (HDA/SYBR Green I) to detect bacterial contamination in platelet products. Thirty positive samples were obtained from spiked platelet products by five transfusion-relevant bacterial strains and were screened for bacterial contamination by HDA/SYBR Green I. HDA/SYBR Green I showed an enhanced yield of bacterial contaminant detection when performed with medium to late shelf life, Day 2 of storage or later platelet products (98.67% sensitivity and 100% specificity compared to the BACT/ALERT culture system). The limit of detection of HDA/SYBR Green I was 1 ng, and there was no cross-reaction with other organisms that could likely contaminate platelet products. The developed HDA/SYBR Green I assay is rapid and simplistic and only requires an easy-to-find heat box, available in general blood bank laboratories, for the amplification step. This technique is suitable for further development as an alternative method to detect bacterial contamination in platelet products in the near future.

Funder

The Chulalongkorn University Ratchadaphiseksomphot Endowment Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3