Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs

Author:

Comes Maria Colomba,Fanizzi Annarita,Bove Samantha,Didonna Vittorio,Diotaiuti Sergio,La Forgia Daniele,Latorre Agnese,Martinelli Eugenio,Mencattini Arianna,Nardone Annalisa,Paradiso Angelo Virgilio,Ressa Cosmo Maurizio,Tamborra Pasquale,Lorusso Vito,Massafra Raffaella

Abstract

AbstractThe dynamic contrast-enhanced MR imaging plays a crucial role in evaluating the effectiveness of neoadjuvant chemotherapy (NAC) even since its early stage through the prediction of the final pathological complete response (pCR). In this study, we proposed a transfer learning approach to predict if a patient achieved pCR (pCR) or did not (non-pCR) by exploiting, separately or in combination, pre-treatment and early-treatment exams from I-SPY1 TRIAL public database. First, low-level features, i.e., related to local structure of the image, were automatically extracted by a pre-trained convolutional neural network (CNN) overcoming manual feature extraction. Next, an optimal set of most stable features was detected and then used to design an SVM classifier. A first subset of patients, called fine-tuning dataset (30 pCR; 78 non-pCR), was used to perform the optimal choice of features. A second subset not involved in the feature selection process was employed as an independent test (7 pCR; 19 non-pCR) to validate the model. By combining the optimal features extracted from both pre-treatment and early-treatment exams with some clinical features, i.e., ER, PgR, HER2 and molecular subtype, an accuracy of 91.4% and 92.3%, and an AUC value of 0.93 and 0.90, were returned on the fine-tuning dataset and the independent test, respectively. Overall, the low-level CNN features have an important role in the early evaluation of the NAC efficacy by predicting pCR. The proposed model represents a first effort towards the development of a clinical support tool for an early prediction of pCR to NAC.

Funder

No funding

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3