Novel alleles gained during the Beringian isolation period

Author:

Niedbalski Sara D.,Long Jeffrey C.

Abstract

AbstractDuring the Last Glacial Maximum, a small band of Siberians entered the Beringian corridor, where they persisted, isolated from gene flow, for several thousand years before expansion into the Americas. The ecological features of the Beringian environment, coupled with an extended period of isolation at small population size, would have provided evolutionary opportunity for novel genetic variation to arise as both rare standing variants and new mutations were driven to high frequency through both neutral and directed processes. Here we perform a full genome investigation of Native American populations in the Thousand Genomes Project Phase 3 to identify unique high frequency alleles that can be dated to an origin in Beringia. Our analyses demonstrate that descendant populations of Native Americans harbor 20,424 such variants, which is on a scale comparable only to Africa and the Out of Africa bottleneck. This is consistent with simulations of a serial founder effects model. Tests for selection reveal that some of these Beringian variants were likely driven to high frequency by adaptive processes, and bioinformatic analyses suggest possible phenotypic pathways that were under selection during the Beringian Isolation period. Specifically, pathways related to cardiac processes and melanocyte function appear to be enriched for selected Beringian variants.

Funder

National Institutes for Water Resources

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3