Terahertz graphene-based multi-functional anisotropic metamaterial and its equivalent circuit model

Author:

Asgari Somayyeh,Fabritius Tapio

Abstract

AbstractIn this paper, a graphene-based multi-functional anisotropic metamaterial composed of two finite parallel graphene ribbons in each unit cell is designed and proposed in the 0.1–5.5 terahertz (THz) region. Simulations are performed by the finite element method (FEM) in the frequency-domain solver of CST Software. An equivalent circuit modeling (ECM) as a simplified approach has been provided by a MATLAB code to model the performance of the metamaterial. The metastructure is polarization-sensitive because of the geometric non-symmetry. The absorption/reflection spectrum of the metamaterial is dynamically tunable by changing the Fermi energy level of the graphene. The introduced metamaterial can act as a THz switch and inverter at 1.23 and 4.21 THz. It acts as an ON state when the incident electric field is in the x-direction and acts as an OFF state when the incident electric field is in the y-direction. It can also act as a bi-functional mirror: a triple-band mirror for the incident electric field in the x-direction and an ultra-broadband mirror for the incident electric field in the y-direction. The proposed metamaterial has a maximum absorption of 100%, maximum linear dichroism (LD) of 100%, and a maximum switching extinction ratio of 33.01 dB. The metamaterial and its applications could be used as a potential platform in future THz devices and systems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3