Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass

Author:

Dolpatcha Sureeporn,Phong Huynh Xuan,Thanonkeo Sudarat,Klanrit Preekamol,Yamada Mamoru,Thanonkeo Pornthap

Abstract

AbstractSecond-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. kudriavzevii was subjected to repetitive long-term cultivation in medium supplemented with a gradually increasing concentration of acetic acid, the major weak acid liberated during the lignocellulosic pretreatment process. Three evolved P. kudriavzevii strains, namely, PkAC-7, PkAC-8, and PkAC-9, obtained in this study exhibited significantly higher resistance toward multiple stressors, including heat, ethanol, osmotic stress, acetic acid, formic acid, furfural, 5-(hydroxymethyl) furfural (5-HMF), and vanillin. The fermentation efficiency of the evolved strains was also improved, yielding a higher ethanol concentration, productivity, and yield than the parental strain, using undetoxified sugarcane bagasse hydrolysate as feedstock. These findings provide evidence that ALE is a practical approach for increasing the multistress tolerance of P. kudriavzevii for stable and efficient second-generation bioethanol production from lignocellulosic biomass.

Funder

The Research Fund for Supporting Graduate Student Program, National Research Council of Thailand, year 2024

The Fundamental Fund of Khon Kaen University in the fiscal year 2023

The Research Fund for Supporting Lecturer to Admit High Potential Student to Study and Research in His Expert Program Year 2019, the Graduate School, Khon Kaen University, Thailand

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3