Alterations of transcriptome signatures in head trauma-related neurodegenerative disorders

Author:

Cho Hyesun,Hyeon Seung Jae,Shin Jong-Yeon,Alvarez Victor E.,Stein Thor D.ORCID,Lee Junghee,Kowall Neil W.,McKee Ann C.,Ryu Hoon,Seo Jeong-Sun

Abstract

AbstractChronic traumatic encephalopathy (CTE) is a neurodegenerative disease that is associated with repetitive traumatic brain injury (TBI). CTE is known to share similar neuropathological features with Alzheimer’s disease (AD), but little is known about the molecular properties in CTE. To better understand the neuropathological mechanism of TBI-related disorders, we conducted transcriptome sequencing analysis of CTE including AD and CTE with AD (CTE/AD) post-mortem human brain samples. Through weighted gene co-expression network analysis (WGCNA) and principal component analysis (PCA), we characterized common and unique transcriptome signatures among CTE, CTE/AD, and AD. Interestingly, synapse signaling-associated gene signatures (such as synaptotagmins) were commonly down-regulated in CTE, CTE/AD, and AD. Quantitative real-time PCR (qPCR) and Western blot analyses confirmed that the levels of synaptotagmin 1 (SYT1) were markedly decreased in CTE and AD compared to normal. In addition, calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase A (PKA), protein kinase C (PKC), and AMPA receptor genes that play a pivotal role in memory function, were down-regulated in head trauma-related disorders. On the other hand, up-regulation of cell adhesion molecules (CAMs) associated genes was only found in CTE. Our results indicate that dysregulation of synaptic transmission- and memory function-related genes are closely linked to the pathology of head injury-related disorder and AD. Alteration of CAMs-related genes may be specific pathological markers for the CTE pathology.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3