Nonlinear dispersive cell model for microdosimetry of nanosecond pulsed electric fields

Author:

Guo Fei,Zhang Lin,Liu Xin

Abstract

Abstract For applications based on nanosecond pulsed electric fields (nsPEFs), the underlying transmembrane potential (TMP) distribution on the plasma membrane is influenced by electroporation (EP) of the plasma membrane and dielectric dispersion (DP) of all cell compartments which is important for predicting the bioelectric effects. In this study, the temporal and spatial distribution of TMP on the plasma membrane induced by nsPEFs of various pulse durations (3 ns, 5 ns unipolar, 5 ns bipolar, and 10 ns) is investigated with the inclusion of both DP and EP. Based on the double-shelled dielectric spherical cell model, the Debye equation describing DP is transformed into the time-domain form with the introduction of polarization vector, and then we obtain the time course of TMP by solving the combination of Laplace equation and time-domain Debye equation. Next, the asymptotic version of the Smoluchowski equation is included to characterize the EP of plasma membrane in order to observe more profound electroporation effects with larger pore density and electroporated areas in consideration of both DP and EP. Through the simulation, it is clearer to understand the relationship between the applied nsPEFs and the induced bioelectric effects.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3