Effects of Conservation Tillage on Soil Physicochemical Properties and Crop Yield in an Arid Loess Plateau, China

Author:

Li Juan,Wang Yi-ke,Guo Zhen,Li Jin-bin,Tian Chang,Hua Dong-wen,Shi Chen-di,Wang Huan-yuan,Han Ji-chang,Xu Yan

Abstract

AbstractConservation tillage can improve soil physical structure and water storage, protect moisture, and increase crop yield. However, the long-term adoption of a single tillage method may have some adverse effects on soil and ecological environment, although crop yields have increased. Through informed allocation of soil tillage techniques, the combination and configuration of soil tillage measures, such as rotary tillage, subsoiling, and no tillage may reduce the shortcomings of traditional long-term farming. To explore the long-term production mode suitable for production of maize in the loess dryland area, a long-term experiment was conducted in Fuping County, Shaanxi Province, from 2013 to 2018. Six farming modes were used in the experiment: no tillage/subsoiling (N ↔ S), subsoiling/rotary tillage (S ↔ R), rotary tillage/no tillage (R ↔ N), continuous no tillage (N ↔ N), continuous subsoiling (S ↔ S), and continuous rotary tillage (R ↔ R). The changes in soil physical and chemical properties, soil water use patterns, soil water storage, conservation effects during the fallow and growth period, and the effects on farmland yield increase were analyzed. The results showed that rotary tillage can effectively improved soil structure and reduced soil bulk density, where N ↔ S treatment soil bulk density is low and in 0–60 cm soil layer averaged 1.31 g/cm3. Different tillage treatments could be used during the fallow period to store additional soil moisture: the N ↔ S treatment showed good water storage effect. Compared to traditional tillage, different tillage methods provided better soil moisture conditions for crops during the growth period, where N ↔ S treatment showed good soil moisture status during the growth period of spring maize. Among all the treatments, N ↔ S treatment effectively increased the organic carbon storage in the 0–60 cm soil layer, which was 54.3 t/hm2. Compared with traditional tillage, different tillage treatments effectively increased plant height and dry matter accumulation of spring maize, where N ↔ S treatment was found to be the best. Compared with the traditional rotary tillage model, the N ↔ S treatment significantly increased crop yield and water use efficiency (WUE) in continuous cropping fields of corn, the average yield of spring corn was 9340.2 kg/hm2, and the average WUE was 22.9 kg/(hm2·mm). In summary, for long-term sustainable development, the N ↔ S model is the best rotational tillage mode for continuous maize cropping in loess soil.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3