Accurate prediction of mega-electron-volt electron beam properties from UED using machine learning

Author:

Zhang Zhe,Yang Xi,Huang Xiaobiao,Li Junjie,Shaftan Timur,Smaluk Victor,Song Minghao,Wan Weishi,Wu Lijun,Zhu Yimei

Abstract

AbstractTo harness the full potential of the ultrafast electron diffraction (UED) and microscopy (UEM), we must know accurately the electron beam properties, such as emittance, energy spread, spatial-pointing jitter, and shot-to-shot energy fluctuation. Owing to the inherent fluctuations in UED/UEM instruments, obtaining such detailed knowledge requires real-time characterization of the beam properties for each electron bunch. While diagnostics of these properties exist, they are often invasive, and many of them cannot operate at a high repetition rate. Here, we present a technique to overcome such limitations. Employing a machine learning (ML) strategy, we can accurately predict electron beam properties for every shot using only parameters that are easily recorded at high repetition rate by the detector while the experiments are ongoing, by training a model on a small set of fully diagnosed bunches. Applying ML as real-time noninvasive diagnostics could enable some new capabilities, e.g., online optimization of the long-term stability and fine single-shot quality of the electron beam, filtering the events and making online corrections of the data for time-resolved UED, otherwise impossible. This opens the possibility of fully realizing the potential of high repetition rate UED and UEM for life science and condensed matter physics applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3