A maximum entropy approach for the modelling of car-sharing parking dynamics

Author:

Daniotti Simone,Monechi Bernardo,Ubaldi Enrico

Abstract

AbstractThe science of cities is a relatively new and interdisciplinary topic aimed at studying and characterizing the collective processes that shape the growth and dynamics of urban populations. Amongst other open problems, the forecast of mobility trends in urban spaces is a lively research topic that aims at assisting the design and implementation of efficient transportation policies and inclusive urban planning. To this end, many Machine-Learning models have been put forward to predict mobility patterns. However, most of them are not interpretable -as they build on complex hidden representations of the system configurations- or do not allow for model inspection, thus limiting our understanding of the underlying mechanisms driving the citizen’s daily routines. Here, we tackle this problem by building a fully interpretable statistical model that, incorporating only the minimum number of constraints, can predict different phenomena arising in the city. Using data on the movements of car-sharing vehicles in several Italian cities, we infer a model using the Maximum Entropy (MaxEnt) principle. The model allows for an accurate spatio-temporal prediction of car-sharing vehicles’ presence in different city areas and, thanks to its simple yet general formulation, to precisely perform anomaly detection (e.g., detect strikes and bad weather conditions from car-sharing data only). We compare the forecasting capabilities of our model with different state-of-the-art models explicitly made for time-series forecasting: SARIMA models and Deep Learning Models. We find that MaxEnt models are highly predictive, outperforming SARIMAs while having similar performances of deep Neural Networks - but with advantages of being more interpretable, more flexibile—i.e., they can be applied to different tasks- and being computationally efficient. Our results show that statistical inference might play a fundamental role in building robust and general models describing urban systems phenomena.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3