Entropy analysis on EMHD 3D micropolar tri-hybrid nanofluid flow of solar radiative slendering sheet by a machine learning algorithm

Author:

Jakeer Shaik,Basha H. Thameem,Reddy Seethi Reddy Reddisekhar,Abbas Mohamed,Alqahtani Mohammed S.,Loganathan K.,Anand A. Vivek

Abstract

AbstractThe purpose of this paper is to analyze the heat transfer behavior of the electromagnetic 3D micropolar tri-hybrid nanofluid flow of a solar radiative slendering sheet with non-Fourier heat flux model. The conversion of solar radiation into thermal energy is an area of significant interest as the demand for renewable heat and power continues to grow. Due to their enhanced ability to promote heat transmission, nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems. The combination of silicon oil-based silicon (Si), magnesium oxide (MgO), and titanium (Ti) nanofluids has attracted attention for their ability to improve the performance of solar-thermal systems. The present study discloses a new approach for intelligent numerical computing solving, which utilizes an MLP feed-forward back-propagation ANN and the Levenberg-Marquard algorithm. The collection of data was conducted for the purpose of testing, certifying, and training the ANN model. The Bvp4c solver in MATLAB is utilized to solve the nonlinear equations governing the momentum, temperature, skin-friction coefficient, and Nusselt number. The characteristics of numerous dimensionless parameters such as porosity parameter $$\left(K={0.0,2.0,4.0}\right)$$ K = 0.0 , 2.0 , 4.0 , vortex viscosity parameter $$\left({R}_{1}={0.5,1.0,1.5}\right)$$ R 1 = 0.5 , 1.0 , 1.5 , electric field parameter $$\left(E={0.0,0.1,0.2}\right)$$ E = 0.0 , 0.1 , 0.2 , thermal relaxation time $$\left(\Lambda ={0.01,0.10,0.20}\right)$$ Λ = 0.01 , 0.10 , 0.20 , heat source/sink parameter, $$\left(Q=-{0.3,0.0,0.3}\right)$$ Q = - 0.3 , 0.0 , 0.3 thermal radiation parameter $$\left(R={0.5,1}.{0,1.5}\right)$$ R = 0.5 , 1 . 0 , 1.5 , temperature ratio parameter $$\left({\theta }_{w}={0.5,1.0,1.5}\right)$$ θ w = 0.5 , 1.0 , 1.5 ,nanoparticle volume fraction $$\left(\phi ={0.00,0.02,0.04}\right)$$ ϕ = 0.00 , 0.02 , 0.04 on Si + MgO + Ti/silicon oil micropolar tri-hybrid nanofluida are analyzed. The ANN model engages in a process of data selection, network construction, training, and evaluation of its effectiveness through the utilization of mean square error. Tables and graphs are used to show how essential parameters affect fluid transport properties. The velocity profile is decreased by higher values of the porosity parameter, whereas the temperature profile is increased. The temperature profile is inversely proportional to higher values of the electric field parameter. The micro-rotation profiles reduced by expanding values vortex viscosity parameter. It has been determined that entropy generation and Bejan number intensifications for enlarged nanoparticle volume fraction.

Funder

King Khalid University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3