Integrated multi-omics analysis of Alzheimer’s disease shows molecular signatures associated with disease progression and potential therapeutic targets

Author:

Kodam Pradeep,Sai Swaroop R.,Pradhan Sai Sanwid,Sivaramakrishnan Venketesh,Vadrevu Ramakrishna

Abstract

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the formation of amyloid plaques implicated in neuronal death. Genetics, age, and sex are the risk factors attributed to AD. Though omics studies have helped to identify pathways associated with AD, an integrated systems analysis with the available data could help to understand mechanisms, potential biomarkers, and therapeutic targets. Analysis of transcriptomic data sets from the GEO database, and proteomic and metabolomic data sets from literature was performed to identify deregulated pathways and commonality analysis identified overlapping pathways among the data sets. The deregulated pathways included those of neurotransmitter synapses, oxidative stress, inflammation, vitamins, complement, and coagulation pathways. Cell type analysis of GEO data sets showed microglia, endothelial, myeloid, and lymphoid cells are affected. Microglia are associated with inflammation and pruning of synapses with implications for memory and cognition. Analysis of the protein-cofactor network of B2, B6, and pantothenate shows metabolic pathways modulated by these vitamins which overlap with the deregulated pathways from the multi-omics analysis. Overall, the integrated analysis identified the molecular signature associated with AD. Treatment with anti-oxidants, B2, B6, and pantothenate in genetically susceptible individuals in the pre-symptomatic stage might help in better management of the disease.

Funder

University Grants Commission

Department of Science and Technology-The Science and Engineering Research Board–Extra Mural Research

Department of Biotechnology – Bioinformatics facility

Department of Science and Technology

University Grants Commission-Special Assistance Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3