Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol–gel method for glass surfaces

Author:

Ghodrati Mohammad,Mousavi-Kamazani Mehdi,Bahrami Zohreh

Abstract

AbstractIn the present study, the superhydrophobic coating was synthesized by spherical silica nanostructures modified with organosilane compounds for glass surfaces. To optimize the conditions in terms of cost-effectiveness and create a super-hydrophobic coating with a high contact angle, the response surface method of the central composite design (CCD) model was performed for the StÖber method, and the contact angle was defined as the response surface for the model. Tetraethoxysilane (TEOS) was used as a precursor and poly(dimethylsiloxane) (PDMS) was used to modify the surface of a spherical silica nanostructure synthesized by a one-step sol–gel method using a base catalyst. The accuracy of the research was checked by the contact angle measurement test and an angle of 162° was obtained. XRD, FT-IR, EDS, SEM, DLS, and AFM analyzes were performed to investigate the synthesis of silica nanostructure. Chemical resistance was performed in acidic, neutral, and alkaline environments and the contact angles were 127°, 134°, and 90°, respectively, which indicates that the coating created on the surface glass has good chemical resistance in acidic and neutral environments.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3