Effect of germanium oxide on the structural aspects and bioactivity of bioactive silicate glass

Author:

Tiama Taha M.,Ibrahim Medhat A.,Sharaf Mohamed H.,Mabied Ahmed F.

Abstract

AbstractTernary silicate glass (69SiO2–27CaO–4P2O5) was synthesized with the sol–gel route, and different percentages of germanium oxide GeO2 (6.25, 12.5, and 25%) and polyacrylic acid (PAA) were added. DFT calculations were performed at the B3LYP/LanL2DZ level of theory for molecular modelling. X-ray powder diffraction (XRPD) was used to study the effect of GeO2/PAA on the structural properties. The samples were further characterized using DSC, ART-FTIR, and mechanical tests. Bioactivity and antibacterial tests were assessed to trace the influence of GeO2 on biocompatibility with biological systems. Modelling results demonstrate that molecular electrostatic potential (MESP) indicated an enhancement of the electronegativity of the studied models. While both the total dipole moment and HOMO/LUMO energy reflect the increased reactivity of the P4O10 molecule. XRPD results confirmed the samples formation and revealed the correlation between the crystallinity and the properties, showing that crystalline hydroxyapatite (HA) is clearly formed in the highest percentages of GeO2, proposing 25% as a strong candidate for medical applications, consistent with the results of mechanical properties and the rest of the characterization results. Simulated body fluid (SBF) in vitro experiments showed promising biocompatibility. The samples showed remarkable antimicrobial and bioactivity, with the strongest effect at 25%. The experimental findings of this study revealed that the incorporation of GeO2 into the glass in terms of structural characteristics, bioactivity, antimicrobial properties, and mechanical properties is advantageous for biomedical fields and especially for dental applications.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3