Transcriptomic and metabolomic analyses reveal that ABA increases the salt tolerance of rice significantly correlated with jasmonic acid biosynthesis and flavonoid biosynthesis

Author:

Han Chunning,Chen Guanjie,Zheng Dianfeng,Feng Naijie

Abstract

AbstractAbscisic acid (ABA) has been shown to mitigate the deleterious effects of abiotic stresses and to regulate plant growth and development. Salinity is one of the important abiotic stresses affecting plant cell metabolism and physiology, which causes serious damages to crops. In this study, we investigated the protective role of exogenous ABA on leaves in response to salinity stress using rice seedlings (two leaf-one heart) subjected to three treatments: ZCK (control), ZS (50 mM NaCl), and ZSA (5 mg L–1 ABA + 50 mM NaCl). We carried out transcriptomic and metabolomic analyses to identify the molecular mechanisms by which ABA protects plants against salt stress. Results showed that 1159 differentially expressed genes (DEGs) (916 up-regulated, 243 down-regulated) and 63 differentially accumulated metabolites (DAMs) (42 up-regulated, 21 down-regulated) were identified between the ZS and ZSA treatments, respectively. In addition, ABA pretreatment regulated the expression pattern of genes responsible for oxidation redox, starch and sucrose metabolism, and phenylpropanoid biosynthesis. The combined transcriptomic and metabolomic analysis revealed that 16 DEGs and 2 DAMs were involved in Flavonoid biosynthesis and 8 DEGs and 2 DAMs were involved alpha-Linolenic acid metabolism which are responsible for salinity stress tolerance through induced by exogenous ABA. Overall, ABA could enhance rice leaves growth and development mainly by regulating flavonoid biosynthesis and linoleic acid metabolism pathway.

Funder

Special projects in key areas of ordinary colleges of Educational Commission of Guangdong Province

Innovation Team Project of ordinary colleges of Educational Commission of Guangdong Province

“Ling Hang” Program of Zhanjiang Innovation and Entrepreneurship Team Introduction

Research start-up project of Guangdong Ocean University

“Innovation and Strong School Project” of Guangdong Ocean University in 2020

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3