Antigen Discovery, Bioinformatics and Biological Characterization of Novel Immunodominant Babesia microti Antigens

Author:

Verma Nitin,Puri Ankit,Essuman Edward,Skelton Richard,Anantharaman Vivek,Zheng Hong,White Siera,Gunalan Karthigayan,Takeda Kazuyo,Bajpai Surabhi,Lepore Timothy J.,Krause Peter J.,Aravind L.,Kumar Sanjai

Abstract

AbstractBabesia microti is an intraerythrocytic parasite and the primary causative agent of human babesiosis. It is transmitted by Ixodes ticks, transfusion of blood and blood products, organ donation, and perinatally. Despite its global public health impact, limited progress has been made to identify and characterize immunodominant B. microti antigens for diagnostic and vaccine use. Using genome-wide immunoscreening, we identified 56 B. microti antigens, including some previously uncharacterized antigens. Thirty of the most immunodominant B. microti antigens were expressed as recombinant proteins in E. coli. Among these, the combined use of two novel antigens and one previously described antigen provided 96% sensitivity and 100% specificity in identifying B. microti antibody containing sera in an ELISA. Using extensive computational sequence and bioinformatics analyses and cellular localization studies, we have clarified the domain architectures, potential biological functions, and evolutionary relationships of the most immunodominant B. microti antigens. Notably, we found that the BMN-family antigens are not monophyletic as currently annotated, but rather can be categorized into two evolutionary unrelated groups of BMN proteins respectively defined by two structurally distinct classes of extracellular domains. Our studies have enhanced the repertoire of immunodominant B. microti antigens, and assigned potential biological function to these antigens, which can be evaluated to develop novel assays and candidate vaccines.

Funder

U.S. Department of Health & Human Services | U.S. Food and Drug Administration

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference48 articles.

1. Vannier, E. & Krause, P. J. Human babesiosis. N Engl J Med 366, 2397–2407, https://doi.org/10.1056/NEJMra1202018 (2012).

2. Spielman, A. Human babesiosis on Nantucket Island: transmission by nymphal Ixodes ticks. Am J Trop Med Hyg 25, 784–787 (1976).

3. Mintz, E. D., Anderson, J. F., Cable, R. G. & Hadler, J. L. Transfusion-transmitted babesiosis: a case report from a new endemic area. Transfusion 31, 365–368 (1991).

4. Perdrizet, G. A. et al. Babesiosis in a renal transplant recipient acquired through blood transfusion. Transplantation 70, 205–208 (2000).

5. Herwaldt, B. L. et al. Transfusion-associated babesiosis in the United States: a description of cases. Ann Intern Med 155, 509–519, https://doi.org/10.7326/0003-4819-155-8-201110180-00362 (2011).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3