Algorithmic discovery of dynamic models from infectious disease data

Author:

Horrocks Jonathan,Bauch Chris T.

Abstract

AbstractTheoretical models are typically developed through a deductive process where a researcher formulates a system of dynamic equations from hypothesized mechanisms. Recent advances in algorithmic methods can discover dynamic models inductively–directly from data. Most previous research has tested these methods by rediscovering models from synthetic data generated by the already known model. Here we apply Sparse Identification of Nonlinear Dynamics (SINDy) to discover mechanistic equations for disease dynamics from case notification data for measles, chickenpox, and rubella. The discovered models provide a good qualitative fit to the observed dynamics for all three diseases, However, the SINDy chickenpox model appears to overfit the empirical data, and recovering qualitatively correct rubella dynamics requires using power spectral density in the goodness-of-fit criterion. When SINDy uses a library of second-order functions, the discovered models tend to include mass action incidence and a seasonally varying transmission rate–a common feature of existing epidemiological models for childhood infectious diseases. We also find that the SINDy measles model is capable of out-of-sample prediction of a dynamical regime shift in measles case notification data. These results demonstrate the potential for algorithmic model discovery to enrich scientific understanding by providing a complementary approach to developing theoretical models.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference80 articles.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3