Author:
Manupibul Udomporn,Tanthuwapathom Ratikanlaya,Jarumethitanont Wimonrat,Kaimuk Panya,Limroongreungrat Weerawat,Charoensuk Warakorn
Abstract
AbstractGait analysis is the method to accumulate walking data. It is useful in diagnosing diseases, follow-up of symptoms, and rehabilitation post-treatment. Several techniques have been developed to assess human gait. In the laboratory, gait parameters are analyzed by using a camera capture and a force plate. However, there are several limitations, such as high operating costs, the need for a laboratory and a specialist to operate the system, and long preparation time. This paper presents the development of a low-cost portable gait measurement system by using the integration of flexible force sensors and IMU sensors in outdoor applications for early detection of abnormal gait in daily living. The developed device is designed to measure ground reaction force, acceleration, angular velocity, and joint angles of the lower extremities. The commercialized device, including the motion capture system (Motive-OptiTrack) and force platform (MatScan), is used as the reference system to validate the performance of the developed system. The results of the system show that it has high accuracy in measuring gait parameters such as ground reaction force and joint angles in lower limbs. The developed device has a strong correlation coefficient compared with the commercialized system. The percent error of the motion sensor is below 8%, and the force sensor is lower than 3%. The low-cost portable device with a user interface was successfully developed to measure gait parameters for non-laboratory applications to support healthcare applications.
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献