Neural processing of olfactory-related words in subjects with congenital and acquired olfactory dysfunction

Author:

Joshi Akshita,Han Pengfei,Faria Vanda,Larsson Maria,Hummel Thomas

Abstract

AbstractOlfactory loss can be acquired (patients with a history of olfactory experiences), or inborn (patients without olfactory experiences/life-long inability to smell). Inborn olfactory loss, or congenital anosmia (CA), is relatively rare and there is a knowledge gap regarding the compensatory neural mechanisms involved in this condition. The study aimed to investigate the top-down olfactory processing in patients with CA or idiopathic acquired anosmia (IA) in comparison to normosmia controls (NC) during expectancy and reading of odor-associated words. Functional magnetic resonance imaging was used to assess brain activations in 14 patients with CA, 8 patients with IA, and 16 NC healthy participants during an expectancy and reading task. Words with strong olfactory associations (OW) (e.g. “banana”) or with little or no olfactory associations (CW) (e.g. “chair”) were used as stimuli and were presented with a block design Analyses were conducted to explore the brain activation in response to OW expectancy or OW reading between groups (CW as baseline). During the expectancy condition of OW, IA and NC groups showed stronger activation in posterior OFC extending to right insula, caudate region and frontal medial OFC respectively. Whereas during the reading condition of OW, CA patients showed stronger activation in posterior OFC extending to the insula. Increased activation of higher-order brain regions related to multisensory integration among CA patients suggests a compensatory mechanism for processing semantic olfactory cues.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference46 articles.

1. Abolmaali, N. D., Hietschold, V., Vogl, T. J., Hüttenbrink, K.-B. & Hummel, T. MR evaluation in patients with isolated anosmia since birth or early childhood. Am. J. Neuroradiol. 23, 157–164 (2002).

2. Djordjevic, J., Zatorre, R. J., Petrides, M., Boyle, J. A. & Jones-Gotman, M. Functional neuroimaging of odor imagery. NeuroImage 24, 791–801 (2005).

3. Seubert, J., Freiherr, J., Djordjevic, J. & Lundström, J. N. Statistical localization of human olfactory cortex. NeuroImage 66, 333–342 (2013).

4. Zhou, G., Lane, G., Cooper, S. L., Kahnt, T. & Zelano, C. Characterizing functional pathways of the human olfactory system. ELife 8, 20 (2019).

5. Rolls, E. T. Taste, olfactory and food texture reward processing in the brain and obesity. Int. J. Obes. 35, 550–561 (2011).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3