A customised target capture sequencing tool for molecular identification of Aloe vera and relatives

Author:

Woudstra Yannick,Viruel Juan,Fritzsche Martin,Bleazard Thomas,Mate Ryan,Howard Caroline,Rønsted Nina,Grace Olwen M.

Abstract

AbstractPlant molecular identification studies have, until recently, been limited to the use of highly conserved markers from plastid and other organellar genomes, compromising resolution in highly diverse plant clades. Due to their higher evolutionary rates and reduced paralogy, low-copy nuclear genes overcome this limitation but are difficult to sequence with conventional methods and require high-quality input DNA. Aloe vera and its relatives in the Alooideae clade (Asphodelaceae, subfamily Asphodeloideae) are of economic interest for food and health products and have horticultural value. However, pressing conservation issues are increasing the need for a molecular identification tool to regulate the trade. With > 600 species and an origin of ± 15 million years ago, this predominantly African succulent plant clade is a diverse and taxonomically complex group for which low-copy nuclear genes would be desirable for accurate species discrimination. Unfortunately, with an average genome size of 16.76 pg, obtaining high coverage sequencing data for these genes would be prohibitively costly and computationally demanding. We used newly generated transcriptome data to design a customised RNA-bait panel targeting 189 low-copy nuclear genes in Alooideae. We demonstrate its efficacy in obtaining high-coverage sequence data for the target loci on Illumina sequencing platforms, including degraded DNA samples from museum specimens, with considerably improved phylogenetic resolution. This customised target capture sequencing protocol has the potential to confidently indicate phylogenetic relationships of Aloe vera and related species, as well as aid molecular identification applications.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3