Author:
Nowruzi Fateme,Imani Rana,Faghihi Shahab
Abstract
AbstractA combination of $${\text{ TiO}}_{2}$$
TiO
2
nanotube array (TON) and controlled drug release system is employed to provide enhanced surface properties of titanium implants. Electrochemical anodization process is used to generate TON for introducing, vancomycin, an effective antibacterial drug against Staphylococcusaureus. TON loaded vancomycin is then coated with a number of layers of 10% gelatin using spin coating technique. The gelatin film is reinforced with graphene oxide (GO) nanoparticles to improve the surface bioactivity. The surface of the samples is characterized by field emission electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and contact angle measurement. The results illustrate that the TON was constructed and vancomycin molecules are successfully loaded. The drug release study shows that the amount of released vancomycin is controlled by the thickness of gelatin layers. With an increase in gelatin film layers from 3 to 7, the release of vancomycin in the burst release phase decreased from 58 to 31%, and sustained release extended from 10 to 17 days. The addition of GO nanoparticles seems to reduce drug release in from 31 to 22% (burst release phase) and prolonged drug release (from 17 to 19 days). MTT assay indicates that samples show no cytotoxicity, and combination of GO nanoparticles with gelatin coating could highly promote MG63 cell proliferation. Soaking the samples in SBF solution after 3 and 7 days demonstrates that hydroxy apatite crystals were deposited on the TON surface with GO-gelatin coating more than surface of TON with gelatin. Moreover, based on the results of disc diffusion assay, both samples (loaded with Vancomycin and coated with gelatin and gelatin-GO) with the inhibition zones equaled to 20 mm show effective antibacterial properties against S. aureus. The evidence demonstrates that titania nanotube loaded with vancomycin and coated with gelatin-GO has a great potential for general applicability to the orthopedic implant field.
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. de Freitas Quadros, F. et al. Preparation, structural and microstructural characterization of Ti-25Ta-10Zr alloy for biomedical applications. J. Market. Res. 8(5), 4108–4114 (2019).
2. Chowdhury, P. R. Surface Modification of Titanium for Orthopedic and Drug Delivery Applications (Northern Illinois University, 2020).
3. Van den Borre, C. E. et al. How surface coatings on titanium implants affect keratinized tissue: A systematic review. J. Biomed. Mater. Res. Part B: Appl. Biomater. (2022).
4. Wu, J. et al. Growth factors enhanced angiogenesis and osteogenesis on polydopamine coated titanium surface for bone regeneration. Mater. Des. 196, 109162 (2020).
5. Nicholson, W. J. Titanium alloys for dental implants: A review. Prosthesis 2(2), 100–116 (2020).
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献