Fas mutation reduces obesity by increasing IL-4 and IL-10 expression and promoting white adipose tissue browning

Author:

Choi Eun Wha,Lee Minjae,Song Ji Woo,Kim KyeongdaeORCID,Lee Jungmin,Yang Jehoon,Lee Seo Hyun,Kim Il Yong,Choi Jae-Hoon,Seong Je Kyung

Abstract

AbstractBrown adipose tissue generates heat via the mitochondrial uncoupling protein UCP1 to protect against obesity and hypothermia. Fas mutant MRL/lpr mice exhibit a significantly leaner phenotype compared to wild type MRL/MpJ mice. In this study, we evaluated the inflammatory cell population in the adipose tissue of MRL/lpr mice, which could potentially influence their lean phenotype. Furthermore, we compared beige fat activity between the MRL/MpJ and MRL/lpr mice. Fas mutation resulted in high body temperature, improved glucose tolerance, and decreased fat mass and adipocyte size. Fas mutation prevented high-fat diet-induced obesity and decreased the white adipose tissue M1:M2 ratio. When mice were fed a high-fat diet, UCP1, IL-4, IL-10, and tyrosine hydroxylase genes had significantly higher expression in Fas-mutant mice than in wild type mice. After a cold challenge, UCP1 expression and browning were also significantly higher in the Fas-mutant mice. In summary, Fas-mutant mice are resistant to high-fat diet-induced obesity due to increased IL-4 and IL-10 levels and the promotion of thermogenic protein activity and browning in their adipose tissues. STAT6 activation might contribute to M2 polarisation by increasing IL-4 and IL-10 levels while increases in M2 and tyrosine hydroxylase levels promote browning in response to Fas mutation.

Funder

National Research Foundation of Korea

Kangwon National University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3