Temperature dependence of molybdenum dialkyl dithiocarbamate (MoDTC) tribofilms via time-resolved Raman spectroscopy

Author:

Garcia Carlos E.,Ueda Mao,Spikes Hugh,Wong Janet S. S.

Abstract

AbstractMolybdenum dialkyl dithiocarbamate (MoDTC) is a friction reducing additive commonly used in lubricants. MoDTC works by forming a low-friction molybdenum disulphide (MoS2) film (tribofilm) on rubbed surfaces. MoDTC-induced MoS2 tribofilms have been studied extensively ex-situ; however, there is no consensus on the chemical mechanism of its formation process. By combining Raman spectroscopy with a tribometer, effects of temperature and shear stress on MoS2 tribofilm formation in steel-steel contacts were examined. Time-resolved Raman spectra of the tribofilm were acquired, together with the instantaneous friction coefficient. The tribofilm is constantly being formed and removed mechanically during rubbing. Increasing shear stress promotes MoS2 formation. The nature of the tribofilm is temperature-dependent, with high-temperature tribofilms giving a higher friction than lower temperature films. Below a critical temperature Tc, a small amount of MoS2 gives significant friction reduction. Above Tc, a patchy film with more MoS2, together with a substantial amount of amorphous carbon attributed to base oil degradation, forms. The composition of this tribofilm evolves during rubbing and a temporal correlation is found between carbon signal intensity and friction. Our results highlight the mechanochemical nature of tribofilm formation process and the role of oil degradation in the effectiveness of friction modifier MoDTC.

Funder

Engineering and Physical Sciences Research Council

Taiho Kogyo Tribology Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3