A transfer learning framework based on motor imagery rehabilitation for stroke

Author:

Xu Fangzhou,Miao Yunjing,Sun Yanan,Guo Dongju,Xu Jiali,Wang Yuandong,Li Jincheng,Li Han,Dong Gege,Rong Fenqi,Leng Jiancai,Zhang Yang

Abstract

AbstractDeep learning networks have been successfully applied to transfer functions so that the models can be adapted from the source domain to different target domains. This study uses multiple convolutional neural networks to decode the electroencephalogram (EEG) of stroke patients to design effective motor imagery (MI) brain-computer interface (BCI) system. This study has introduced ‘fine-tune’ to transfer model parameters and reduced training time. The performance of the proposed framework is evaluated by the abilities of the models for two-class MI recognition. The results show that the best framework is the combination of the EEGNet and ‘fine-tune’ transferred model. The average classification accuracy of the proposed model for 11 subjects is 66.36%, and the algorithm complexity is much lower than other models.These good performance indicate that the EEGNet model has great potential for MI stroke rehabilitation based on BCI system. It also successfully demonstrated the efficiency of transfer learning for improving the performance of EEG-based stroke rehabilitation for the BCI system.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-Frequency-Space EEG Decoding Model Based on Dense Graph Convolutional Network for Stroke;IEEE Journal of Biomedical and Health Informatics;2024-09

2. Characterization and classification of kinesthetic motor imagery levels;Journal of Neural Engineering;2024-07-24

3. Post-stroke hand gesture recognition via one-shot transfer learning using prototypical networks;Journal of NeuroEngineering and Rehabilitation;2024-06-12

4. A systematic evaluation of Euclidean alignment with deep learning for EEG decoding;Journal of Neural Engineering;2024-06-01

5. Determination of the Optimal Electrode Selection for Motor Imaginary Classification with EEGNet;Proceedings of the 2024 10th International Conference on Computer Technology Applications;2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3