ERICH3 in Primary Cilia Regulates Cilium Formation and the Localisations of Ciliary Transport and Sonic Hedgehog Signaling Proteins

Author:

Alsolami Mona,Kuhns Stefanie,Alsulami Manal,Blacque Oliver E.

Abstract

Abstract Intraflagellar transport (IFT) is essential for the formation and function of the microtubule-based primary cilium, which acts as a sensory and signalling device at the cell surface. Consisting of IFT-A/B and BBSome cargo adaptors that associate with molecular motors, IFT transports protein into (anterograde IFT) and out of (retrograde IFT) the cilium. In this study, we identify the mostly uncharacterised ERICH3 protein as a component of the mammalian primary cilium. Loss of ERICH3 causes abnormally short cilia and results in the accumulation of IFT-A/B proteins at the ciliary tip, together with reduced ciliary levels of retrograde transport regulators, ARL13B, INPP5E and BBS5. We also show that ERICH3 ciliary localisations require ARL13B and BBSome components. Finally, ERICH3 loss causes positive (Smoothened) and negative (GPR161) regulators of sonic hedgehog signaling (Shh) to accumulate at abnormally high levels in the cilia of pathway-stimulated cells. Together, these findings identify ERICH3 as a novel component of the primary cilium that regulates cilium length and the ciliary levels of Shh signaling molecules. We propose that ERICH3 functions within retrograde IFT-associated pathways to remove signaling proteins from cilia.

Funder

Saudi Arabian government

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3