Abstract
AbstractTo derive the maturation of neurophysiological processes from childhood to adulthood reflected by the change of motor-evoked potential (MEP) features. 38 participants were recruited from four groups (age mean in years [SD in months], number (males)): children (7.3 [4.2], 7(4)), preadolescents (10.3 [6.9], 10(5)), adolescents (15.3 [9.8], 11(5)), and adults (26.9 [46.2], 10(5)). The navigated transcranial magnetic stimulation was performed on both hemispheres at seven stimulation intensity (SI) levels from sub- to supra-threshold and targeted to the representative cortical area of abductor pollicis brevis muscle. MEPs were measured from three hand- and two forearm-muscles. The input–output (I/O) curves of MEP features across age groups were constructed using linear mixed-effect models. Age and SI significantly affected MEP features, whereas the stimulated side had a minor impact. MEP size and duration increased from childhood to adulthood. MEP onset- and peak-latency dropped in adolescence, particularly in hand muscles. Children had the smallest MEPs with the highest polyphasia, whereas I/O curves were similar among preadolescents, adolescents, and adults. This study illustrates some of the changing patterns of MEP features across the ages, suggesting developing patterns of neurophysiological processes activated by TMS, and to motivate studies with larger sample size.
Publisher
Springer Science and Business Media LLC
Reference56 articles.
1. Payne, V. G., Block, M. E. & Yan, J. H. Understanding human motor development: The mountain metaphor. In Human Motor Development in Individuals with and Without Disabilities 3–16 (Nova Science Publishers, Inc, 2010).
2. Lenroot, R. K. & Giedd, J. N. Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev. 30, 718–729 (2006).
3. Shaw, P. et al. Neurodevelopmental trajectories of the human cerebral cortex. J. Neurosci. 28, 3586 (2008).
4. Vandekar, S. N. et al. Topologically dissociable patterns of development of the human cerebral cortex. J. Neurosci. 35, 599 (2015).
5. Mabbott, D. J., Noseworthy, M., Bouffet, E., Laughlin, S. & Rockel, C. White matter growth as a mechanism of cognitive development in children. Neuroimage 33, 936–946 (2006).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献