Author:
Jones Darcy A. B.,Rozano Lina,Debler Johannes W.,Mancera Ricardo L.,Moolhuijzen Paula M.,Hane James K.
Abstract
AbstractFungal plant-pathogens promote infection of their hosts through the release of ‘effectors’—a broad class of cytotoxic or virulence-promoting molecules. Effectors may be recognised by resistance or sensitivity receptors in the host, which can determine disease outcomes. Accurate prediction of effectors remains a major challenge in plant pathology, but if achieved will facilitate rapid improvements to host disease resistance. This study presents a novel tool and pipeline for the ranking of predicted effector candidates—Predector—which interfaces with multiple software tools and methods, aggregates disparate features that are relevant to fungal effector proteins, and applies a pairwise learning to rank approach. Predector outperformed a typical combination of secretion and effector prediction methods in terms of ranking performance when applied to a curated set of confirmed effectors derived from multiple species. We present Predector (https://github.com/ccdmb/predector) as a useful tool for the ranking of predicted effector candidates, which also aggregates and reports additional supporting information relevant to effector and secretome prediction in a simple, efficient, and reproducible manner.
Funder
Grains Research & Development Corporation, Australia
Publisher
Springer Science and Business Media LLC
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献