Minimum number of inertial measurement units needed to identify significant variations in walk patterns of overweight individuals walking on irregular surfaces

Author:

Sikandar Tasriva,Rabbi Mohammad Fazle,Ghazali Kamarul Hawari,Altwijri Omar,Almijalli Mohammed,Ahamed Nizam Uddin

Abstract

AbstractGait data collection from overweight individuals walking on irregular surfaces is a challenging task that can be addressed using inertial measurement unit (IMU) sensors. However, it is unclear how many IMUs are needed, particularly when body attachment locations are not standardized. In this study, we analysed data collected from six body locations, including the torso, upper and lower limbs, to determine which locations exhibit significant variation across different real-world irregular surfaces. We then used deep learning method to verify whether the IMU data recorded from the identified body locations could classify walk patterns across the surfaces. Our results revealed two combinations of body locations, including the thigh and shank (i.e., the left and right shank, and the right thigh and right shank), from which IMU data should be collected to accurately classify walking patterns over real-world irregular surfaces (with classification accuracies of 97.24 and 95.87%, respectively). Our findings suggest that the identified numbers and locations of IMUs could potentially reduce the amount of data recorded and processed to develop a fall prevention system for overweight individuals.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3