SNR enhanced high-speed two-photon microscopy using a pulse picker and time gating detection

Author:

Song Jeonggeun,Kang Juehyung,Kang Ungyo,Nam Hyeong Soo,Kim Hyun Jung,Kim Ryeong Hyeon,Kim Jin Won,Yoo Hongki

Abstract

AbstractTwo-photon microscopy (TPM) is an attractive biomedical imaging method due to its large penetration depth and optical sectioning capability. In particular, label-free autofluorescence imaging offers various advantages for imaging biological samples. However, relatively low intensity of autofluorescence leads to low signal-to-noise ratio (SNR), causing practical challenges for imaging biological samples. In this study, we present TPM using a pulse picker to utilize low pulse repetition rate of femtosecond pulsed laser to increase the pulse peak power of the excitation source leading to higher emission of two-photon fluorescence with the same average illumination power. Stronger autofluorescence emission allowed us to obtain higher SNR images of arterial and liver tissues. In addition, by applying the time gating detection method to the pulse signals obtained by TPM, we were able to significantly reduce the background noise of two-photon images. As a result, our TPM system using the pulsed light source with a 19 times lower repetition rate allowed us to obtain the same SNR image more than 19 times faster with the same average power. Although high pulse energy can increase the photobleaching, we also observed that high-speed imaging with low total illumination energy can mitigate the photobleaching effect to a level similar to that of conventional illumination with a high repetition rate. We anticipate that this simple approach will provide guidance for SNR enhancement with high-speed imaging in TPM as well as other nonlinear microscopy.

Funder

Ministry of Education, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3