Insights into hydro thermal gasification process of microplastic polyethylene via reactive molecular dynamics simulations

Author:

Ha Do Tuong,Tong Hien Duy,Trinh Thuat T.

Abstract

AbstractMicroplastics have become a pressing environmental issue due to their widespread presence in our ecosystems. Among various plastic components, polyethylene (PE) is a prevalent and persistent contaminant. Hydrothermal gasification (HTG), a promising technology for converting PE into syngas, holds great promise for mitigating the microplastic problem. In this study, we employ ReaxFF molecular dynamics simulations to investigate the HTG process of PE, shedding light on the intricate relationships between temperature, water content, carbon conversion efficiency, and product distributions. The results reveal that hydrothermal gasification of PE is a complex process involving multiple reaction pathways. Consistently with experimental findings, the calculations indicate that the gas phase exhibits a substantial hydrogen fraction, reaching up to 70%. Interestingly, our simulations reveal a dual role of water content in the HTG process. On one hand, water enhances hydrogen production by promoting the gas formation. On the other hand, it elevates the activation energy required for PE decomposition. Depending on the water content, the calculated activation energies range from 176 to 268 kJ/mol, which are significantly lower than those reported for thermal gasification (TG). This suggests that HTG may be a more efficient route for PE conversion. Furthermore, this study highlights the importance of optimizing both temperature and water content in HTG systems to achieve high yields of hydrogen-rich syngas. The results obtained from our ReaxFF MD simulations demonstrate the robustness of this computational methodology in elucidating complex chemical reactions under extreme conditions. Our findings offer critical insights into the design of advanced waste management strategies for microplastics and contribute to the development of sustainable practices for resource recovery. This work underscores the potential of HTG as a key technology for addressing the global challenge of plastic pollution.

Funder

Porous Media Laboratory

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3