Experimental and thermodynamic modeling decitabine anti cancer drug solubility in supercritical carbon dioxide

Author:

Pishnamazi Mahboubeh,Zabihi Samyar,Jamshidian Sahar,Borousan Fatemeh,Hezave Ali Zeinolabedini,Marjani Azam,Shirazian Saeed

Abstract

AbstractDesign and development of efficient processes for continuous manufacturing of solid dosage oral formulations is of crucial importance for pharmaceutical industry in order to implement the Quality-by-Design paradigm. Supercritical solvent-based manufacturing can be utilized in pharmaceutical processing owing to its inherent operational advantages. However, in order to evaluate the possibility of supercritical processing for a particular medicine, solubility measurement needs to be carried out prior to process design. The current work reports a systematic solubility analysis on decitabine as an anti-cancer medicine. The solvent is supercritical carbon dioxide at different conditions (temperatures and pressures), while gravimetric technique is used to obtain the solubility data for decitabine. The results indicated that the solubility of decitabine varies between 2.84 × 10–05 and 1.07 × 10–03 mol fraction depending on the temperature and pressure. In the experiments, temperature and pressure varied between 308–338 K and 12–40 MPa, respectively. The solubility of decitabine was plotted against temperature and pressure, and it turned out that the solubility had direct relation with the pressure due to the effect of pressure on solvating power of solvent. The effect of temperature on solubility was shown to be dependent on the cross-over pressure. Below the cross-over pressure, there is a reverse relation between temperature and solubility, while a direct relation was observed above the cross-over pressure (16 MPa). Theoretical study was carried out to correlate the solubility data using several thermodynamic-based models. The fitting and model calibration indicated that the examined models were of linear nature and capable to predict the measured decitabine solubilities with the highest average absolute relative deviation percent (AARD %) of 8.9%.

Funder

Government of the Russian Federation

Ministry of Science and Higher Education of Russia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3