A relook into plant wilting: observational evidence based on unsaturated soil–plant-photosynthesis interaction

Author:

Garg Ankit,Bordoloi Sanandam,Ganesan Suriya Prakash,Sekharan Sreedeep,Sahoo Lingaraj

Abstract

AbstractPermanent wilting point (PWP) is generally used to ascertain plant resistance against abiotic drought stress and designated as the soil water content (θ) corresponding to soil suction (ψ) at 1500 kPa obtained from the soil water retention curve. Determination of PWP based on only pre-assumed ψ may not represent true wilting condition for soils with contrasting water retention abilities. In addition to ψ, there is a need to explore significance of additional plant parameters (i.e., stomatal conductance and photosynthetic status) in determining PWP. This study introduces a new framework for determining PWP by integrating plant leaf response and ψ during drought. Axonopus compressus were grown in two distinct textured soils (clayey loam and silty sand), after which drought was initiated till wilting. Thereafter, ψ and θ within the root zone were measured along with corresponding leaf stomatal conductance and photosynthetic status. It was found that coarse textured silty sand causes wilting at much lower ψ (≈ 300 kPa) than clayey loam (≈ 1600 kPa). Plant response to drought was dependent on the relative porosity and mineralogy of the soil, which governs the ease at which roots can grow, assimilate soil O2, and uptake water. For clay loam, the held water within the soil matrix does not facilitate easy root water uptake by relatively coarse root morphology. Contrastingly, fine root hair formation in silty sand facilitated higher plant water uptake and doubled the plant survival time.

Funder

National Natural Science Fund (NSFC) grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference58 articles.

1. Althor, G., Watson, J. E. & Fuller, R. A. Global mismatch between greenhouse gas emissions and the burden of climate change. Sci. Rep. 6, 20281 (2016).

2. Sultan, B., Defrance, D. & Iizumi, T. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Sci. Rep. 9, 12834 (2019).

3. Change, I. P. O. C. Intergovernmental panel on climate (Climate change, 2014)

4. Karmakar, R., Das, I., Dutta, D. & Rakshit, A. Potential effects of climate change on soil properties: a review. Sci. Intern. 4, 51–73 (2016).

5. Pandey, P., Irulappan, V. M., Bagavathiannan, M. & Muthappa, S. K. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 8, 537 (2017).

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3